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Abstract:  8 

 9 

We used physical models to investigate the structural evolution of segmented extensional rifts 10 

containing syn-rift evaporites and their subsequent inversion. An early stage of extension 11 

generated structural topography consisting of a series of en-échelon graben. Our salt analog 12 

filled these graben and the surroundings before continued extension and, finally, inversion. 13 

 14 

During post-salt extension, deformation in the subsalt section remained focused on the graben-15 

bounding fault systems whereas deformation in suprasalt sediments was mostly detached, 16 

forming a sigmoidal extensional minibasin system across the original segmented graben array. 17 

Little brittle deformation was observed in the post-salt section. Sedimentary loading from the 18 

minibasins drove salt up onto the footwalls of the subsalt faults, forming diapirs and salt-ridge 19 

networks on the intra-rift high blocks. Salt remobilization and expulsion from beneath the 20 

extensional minibasins was enhanced along and up the major relay/transfer zones that separated 21 

the original sub-salt grabens, forming major diapirs in these locations.  22 

 23 
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Inversion of this salt-bearing rift system produced strongly decoupled shortening belts in 24 

basement and suprasalt sequences. Suprasalt deformation geometries and orientations are 25 

strongly controlled by the salt diapir and ridge network produced during extension and 26 

subsequent downbuilding. Thrusts are typically localized at minibasin margins where the 27 

overburden was thinnest and salt had risen diapirically on the horst blocks. In the subsalt 28 

section, shortening strongly inverted sub-salt grabens, which uplifted the suprasalt minibasins. 29 

New popup structures also formed in the subsalt section. Primary welds formed as suprasalt 30 

minibasins touched down onto inverted graben. Model geometries compare favorably to natural 31 

examples such as those in the Moroccan High Atlas. 32 

 33 

1. Introduction 34 

 35 

As noted by Bonini et al. (2011), in their review paper, “basin inversion” is a commonly used 36 

term to signify shortening of formerly extensional basins (cf. Buchanan and McClay, 1991; 37 

Buchanan and Buchanan, 1995;  Ziegler, 1987). Localization of shortening by extensional rifts, 38 

and their subsequent inversion, is not surprising as these are long-lived crustal weak zones. 39 

Inversion of graben and entire rift systems has been a significant focus of study since the early 40 

1980s owing to its importance related to: (1) the role of pre-existing faults in focusing and 41 

accommodating shortening of the upper, shallow crust; (2) the role of pre-inversion high-angle 42 

faults as potential seismogenic sources and hazards, and; (3) their economic importance related 43 

to focused fluid flow and associated ore deposit generation was well as influencing hydrocarbon 44 

maturation, migration pathways, and trapping in inverted petroleum-bearing sedimentary basins 45 

(see Bonini et al., 2011 for further details and references). Deposition of evaporites in these 46 
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systems, either as syn-rift deposits or immediately after rifting, can add complexity to the system 47 

in many ways. For example salt may have significant variation in thickness across the rift 48 

resulting in varying degrees of coupling between the basement and suprasalt sediments during 49 

subsequent extension and inversion (e.g. Withjack and Calloway, 2000). Salt may also be 50 

expelled from beneath depotroughs, during extension and/or loading to form diapir networks that 51 

may later focus shortening as plate motions evolve (e.g. Dooley et al., 2005). These diapir 52 

networks may be surrounded by patchy weld systems adding further complications to the system 53 

(cf. Rowan and Krzywiec, 2014).  54 

 55 

Examples of basement-involved inverted salt-bearing rifts include the the Mid-Polish Trough 56 

(e.g. Krzywiec, 2012; Rowan and Krzywiec, 2014), the southern North Sea (e.g. Stewart, 2007; 57 

Stewart and Coward, 1995; Davison et al., 2000; Jackson and Stewart, 2017) and the High Atlas 58 

of Morocco (e.g. Saura et al., 2014; Martín-Martín et al., 2016; Moragas et al., 2017; Teixell et 59 

al., 2017; Verges et al., 2017; Figure 1). The central High Atlas range is a doubly-vergent fold-60 

thrust belt that formed by inversion of a Triassic-Jurassic rift basin during the Alpine orogeny 61 

(e.g. Teixell et al., 2003; Saura et al., 2014; Moragas et al., 2017). Within the central part of the 62 

range outcrop is dominated by Lower-Middle Jurassic deposits that form brand synclines or flat-63 

topped plateaux, and separated by NE-SW oriented anticlines or thrust faults (Figure 1; Moragas 64 

et al., 2017). These ridges have had a variety of explanations for their origin such as 65 

transpressional deformation or the emplacement of Jurassic intrusions (see detailed discussion in 66 

Moragas et al., 2017, for more details). A few studies of individual structures proposed a diapiric 67 

origin for these ridges (e.g. Michard et al., 2011). However, more recent studies have interpreted 68 

the entire Central High Atlas as a complex salt-bearing rift basin with associated diapirism and 69 
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minibasin formation, that was inverted in the Alpine orogeny. For example, Saura et al. (2014) 70 

documented more than ten elongated extensional minibasins that were originally separated by, 71 

now welded, salt walls. Thick evaporitic successions were deposited within the developing rift in 72 

the late Triassic (Verges et al., 2017). Extension continued into the Early Jurassic with coeval 73 

diapirism and minibasin formation, followed by a long post-rift stage where halo kinetic 74 

processes continued to evolve (Moragas et al., 2017; Martín-Martín et al., 2017). Inversion began 75 

in the late Cretaceous (e.g. Verges et al., 2017), squeezing a complex diapir and minibasin 76 

province. Such a diapir and minibasin province is likely to exhibit extreme variations in 77 

overburden strength, and thus behavior, during shortening. It is this salt-tectonic scenario that 78 

formed the inspiration for our experimental study. 79 

 80 

Some previous physical modeling studies of basement-involved extension and inversion of salt-81 

bearing rifts include those of Dooley et al. (2005) with application to the North Sea, and Moragas 82 

et al. (2016) in their focused study on syn- and post-rift diapirism and inversion in the Moroccan 83 

High Atlas. Bonini et al. (2011) modeled detached extension and subsequent shortening of these 84 

graben, and Roma et al. (2017, 2019) as well as Ferrer et al. (2016) modeled extension and 85 

inversion above rigid planar and ramp-flat extensional master faults with high-level salt layers. 86 

However, all the basement-involved studies to date relied on non-deformable basement blocks to 87 

generate extension and subsequent inversion. An exception to this are the clay models of 88 

Durcanin (2009), but these models could not be sectioned and thus sections shown in this study 89 

are “hypothetical”. A new series of experiments was designed to produce segmented rift systems 90 

in deformable model materials, fill them with syn-rift evaporites and subject them to further 91 

extension, loading and, finally, inversion. Our goals with these models was to test: (1) where and 92 
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why do diapirs form in a segmented extensional rift system?; (2) how much coupling is there 93 

between basement and cover separated by a relatively thick salt body during extension and 94 

contraction?; (3) what styles of shortening structures form in the suprasalt section during 95 

inversion and what controls their location and style?, and; (4) what are the styles of shortening in 96 

the subsalt section and can we get significant reactivation of extensional structures during 97 

inversion? 98 

 99 

2. Modeling Methodology 100 

 101 

2.1 Model Design and Scaling 102 

 103 

Our goal with these models was to generate a series of en-échelon graben across a rift system in 104 

a similar fashion to models presented in Dooley et al. (2005). They achieved this by using non-105 

deformable wooden blocks with a series of steps, whereas we wished to generate segmented rifts 106 

using deformable materials that could be serially sectioned at the end of the model run. Previous 107 

models of segmented rifts systems used offset rubber sheets to do this (e.g. McClay et al., 2002; 108 

Amilibia et al., 2005). However, these suffered from internal artifacts as the rubber is stretched 109 

to generate extension in the overburden it also constricts orthogonal to the extension direction, 110 

resulting in accommodation or transfer zones that are structural lows rather than highs in these 111 

locations (e.g. see Sections 2 and 5 of Figure 8 in Amilibia et al., 2005). In order to mitigate 112 

these effects we used a hybrid system comprising a single basal stretching sheet, a thin basal 113 

silicone detachment and a series of polymer slabs to generate a segmented rift system in the 114 

overburden (Figure 2). The stretching rubber sheet generated extension, whilst the basal polymer 115 
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layer acted as an efficient detachment (during extension and contraction). In contrast, the 116 

polymer slabs served to focus extension at these sites, in much the same way that precursor 117 

diapirs focus strain in contractional models (e.g. Dooley et al., 2009, 2015; Callot et al., 2007, 118 

2012). Dooley and Schreurs (2012) employed a variety of polymer “crustal weak zones” to focus 119 

extension in pull-apart basins and to concentrate and perturb deformation above basement strike-120 

slip zones. Le Calvez and Vendeville (2002), Zwaan et al. (2016) and Zwaan and Schreurs 121 

(2017) also used polymer “ridges” to focus or “seed” extensional structures in their models, and 122 

Marques et al. (2007) used wedge shaped polymer layers to investigate transform faulting 123 

associated with ridge push. Dual motors generated the symmetric extension and contraction in 124 

these models (Figure 2). 125 

 126 

Models are dynamically scaled such that 1 cm in the model approximates to 1 km in nature (see, 127 

for example, Brun et al. 1994 and McClay 1990 for detailed discussions on scaling). Models 128 

were conducted with combined horizontal velocities of 1.4 x 10-4 cm/s that yields a strain rate of 129 

1.8 x 10-6 s-1
. This rate models an extensional fault system with a moderate displacement rate 130 

(e.g. Withjack & Callaway 2000; Dooley et al., 2005). More importantly, post-salt extension was 131 

pulsed in order to allow the model salt analog to react to the imposed strain and the differential 132 

loads induced by spatially-variable thickness of the synkinematic sediments added after each 133 

increment of extension. Models consist of 3 or 4 main evolutionary stages (Table 1): (1) pre-salt 134 

extension followed by addition of model salt into the main structural topography addition of a 135 

regional salt fringe and thin roof: (2) post-salt extension delivered in a series of pulses, as 136 

described above; (3) post-salt loading and downbuilding stage, allowing diapirs that formed in 137 

Stage 2 to continue to rise vertically, and; (4) inversion, where the moving endways are detached 138 
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from the baseplates, the baseplates are clamped in place, and motion is reversed. We focus 139 

primarily on the results of one experiment (Model 1, Table 1) in the descriptive sections and use 140 

some of the results from two other experiments (Models 2 and 3, Table 1) to discuss salt 141 

tectonics styles and salt migration pathways in non-inverted and weakly inverted rifts in the 142 

discussion section. The only difference between Model 1 and Models 2 and 3 is that the thin 143 

basal detachment layer extended across the entire model base in Model 1, whereas it was limited 144 

to just covering the rubber sheet in Models 2 and 3 (see Figure 2). 145 

 146 

2.2 Modeling Materials 147 

 148 

As with other physical modeling studies of salt tectonics, we simulated rock salt using ductile 149 

silicone and its siliciclastic overburden using brittle, dry, granular material. The silicone was a 150 

near-Newtonian viscous polydimethylsiloxane. This polymer has a density of 950 to 980 kg m-3 151 

and a dynamic shear viscosity of 2.5 × 104 Pa s at a strain rate of 3 × 10-1 s-1 (Weijermars, 1986; 152 

Weijermars et al., 1993). In some of our models the salt analog was dyed with minute quantities 153 

of powdered pigments in order to track salt flow paths in the completed model. The layered 154 

brittle overburden comprised different colored mixtures of silica sand (bulk density of ~1,700 kg 155 

m-3; grain size of 300-600 µm; internal friction coefficient, µ, = 0.55–0.65; McClay, 1990; 156 

Krantz, 1991; Schellart, 2000), and hollow ceramic microspheres (“glass beads”) having a bulk 157 

density of 650 kg m-3, average grain size 90-150 µm, and typical µ = 0.45 (e.g. Rossi and Storti, 158 

2003; Dooley et al., 2009). 159 

 160 
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The hollows spheres serve to lower bulk grain size, as well as allowing us to modify the density 161 

of the brittle overburden. Most physical models of salt tectonics have a layered brittle 162 

overburden of pure quartz sand, which creates density ratios that are much higher than those of 163 

nature. Exaggerated density ratios erroneously magnify overburden foundering, rise of active 164 

diapirs, and expulsion and extrusion of salt (Dooley et al., 2007, 2009). In our models, the pre-165 

rift overburden sediments had a density ratio of equal to that of our model salt by our varying the 166 

sand-bead ratio in the brittle section. This was done to minimize any density- or buoyancy-driven 167 

rise of the basal slabs that are also made of the same materials as our salt analog. In stages 2 and 168 

3 of the model runtime the density of the sedimentary load was increased to 1.1-1.2 times that of 169 

our model salt. This was done to encourage salt remobilization from beneath the extensional 170 

minibasins in Stage 2 and to keep salt structures (diapirs) growing in Stage 3. 171 

 172 

2.3. Data Capture, Visualization, and Interrogation 173 

 174 

Computer-controlled cameras photographed the obliquely lit upper surface of the models at set 175 

time intervals. A digital image correlation (DIC) system, consisting of a high-resolution stereo 176 

charge-coupled device (CCD) system and associated software, tracked the surface-strain history, 177 

subsidence, and uplift values, as well as displacement vectors of the top surface of the model. 178 

Adding synkinematic layers means data is incremental for these data. For more details on DIC 179 

monitoring techniques, see Adam et al. (2005). After completion models were impregnated with 180 

a gelatin mixture, left to partially dry for 12 hours and then sliced into closely spaced slabs. 181 

Coregistered digital photographs of these closely spaced serial sections (≤3.5 mm apart) yielded 182 

a 3D voxel model of completed model. Dip sections are the sliced and photographed cross 183 
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sections, whereas crosslines, arbitrary lines and depth slices are virtual sections constructed from 184 

the voxel model. As a result, the crossline, arbitrary line and depth slice images are interpolated 185 

and thus not as sharp as those derived directly from photographed dip sections. In addition the 186 

3D salt volume can be extracted from this voxel by coloring the salt in each section with a 187 

known pixel value (e.g. white for a value of 255). 188 

 189 

3. Experimental Results 190 

 191 

3.1 Stage 1: Pre-Salt Extension 192 

 193 

Stage 1 comprised 3 cm of uniform extension in order to generate structural topography that was 194 

infilled by our salt analog (Table 1). The basal weak slab array shown in Figure 2, was there to 195 

ensure a segmented rift system formed. Height-change data (∆Z; Figure 3a) generated from our 196 

stereo-DIC system reveals the main rift system in Model 1 comprising en-échelon graben that 197 

step to the right across the underlying basal slab array (Figure 2). Three main depotroughs are 198 

seen along the segmented rift system, separated by zones of higher intra-rift topography, 199 

accommodation zones (Figure 3). Strain data illustrate the focused extension along the fault 200 

network across the rift system (Figure 3b). On many faults maximum extensional strains, and 201 

maximum width of faults, are recorded along their centers, although some deviate from this trend 202 

(Figure 3b).  Weaker extensional systems form at the margins of the model, far from the central 203 

rift system (Figure 3). The accommodation zones are clearly seen in the strain data, and 204 

consisted of interlocking arrays of mostly soft linked extension faults with some rotation seen at 205 

fault tips (Figure 3b). Between the southern and central and between the central and northern 206 
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subbasins, clear fault-tip rotation is seen with breaching of the major relay systems separating the 207 

subbasins (Figure 3b). 208 

 209 

After this stage, our salt analog was placed into the three subbasins and allowed to settle (Figure 210 

4a). Once this had settled and filled the structural relief a 12-mm-thick regional layer of our salt 211 

analog was emplaced across the model as a series of tiles (Figure 4b), and allowed to degas prior 212 

to Stage 2.  213 

 214 

3.2 Stage 2: Post-Salt Extension 215 

 216 

Our salt analog in Model 1 was buried under a thin (4 mm) sedimentary roof before undergoing a 217 

further 6 cm of extension during Stage 2 (Table 1). Figure 5 shows height-change data and strain 218 

from Model 1 after applying total of 4 cm of post-salt extension. Synkinematic sediments were 219 

added after each 1 cm of basement extension and the values shown in Figure 6 are incremental 220 

for that phase of extension, i.e. 3-4 cm post-salt extension. During this period the main 221 

depotrough comprised a sigmoidal extensional minibasin located above the original offset graben 222 

system (Figure 5a). A series of curvilinear fabrics define relatively minor surface faulting (Figure 223 

5a). Strains seen on the upper surface were much more diffuse and spread across the rift system 224 

than those seen in the pre-salt extension stage (Figure 3). The strain fields formed curvilinear 225 

systems of extension that, for the most part, defined minor graben above reactive diapirs, and 226 

appear to be diagnostic of detached suprasalt extension (cf. Dooley et al., 2005; Figure 5b). 227 

Maximum extensional strains were seen adjacent to the sigmoidal depocenter, as expected, 228 

delineating the margins of the main depotrough, and in locations that were accommodation zones 229 
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during the pre-salt extension phase as the cover collapsed into the developing trough (Figures 3 230 

and 5). Minor shortening strains are seen within the extensional minibasin/depotrough due to 231 

inner-arc contraction as it subsided into, and expelled, the salt (Figure 5b). The marginal graben 232 

at the ends of the model continued to subside during this stage (Figure 5). 233 

 234 

3.3 Stage 3: Post-Extension Loading 235 

 236 

Model 1 underwent 9 cm total extension prior to moving on to a downbuilding or post-extension 237 

loading phase in Stage 3. Stage 3 lasted for 5 days and synkinematic sediments were added daily, 238 

keeping apace and gently covering any positive topography that developed whilst continuing to 239 

load negative topography.  240 

 241 

Height change maps of the model surface of Layers 1 and 4 are shown in Figure 6. Clearly 242 

illustrated in Figure 6a are the rising diapir networks as salt was expelled from beneath the 243 

composite minibasin in the model center.  Comparing Figure 6a to the strain map in Figure 5b 244 

one can immediately see that the diapir networks closely conform to the strain patterns seen 245 

during Stage 2, evolving from reactive to passive features in this post-extension stage. Diapirs 246 

labelled 1-3 are all located on the footwalls of the main extensional minibasin, and, more 247 

importantly, in locations that lie above, and along, what were the original accommodation zones 248 

between the original subbasins (see Figures 3, 5 and 6). More linear salt walls are seen rising 249 

adjacent to the marginal graben systems and the extensional minibasins is flanked by upwellings 250 

along most of its length (Figure 3). Figure 6b illustrates the height change map after 4 days into 251 

Stage 3. Activity waned in these systems over time except for the more active and emergent 252 
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diapirs (1 & 2 in Figure 6b). Smaller amounts of salt rise are seen flanking the central region of 253 

subsidence. 254 

 255 

3.4 Stage 4: Inversion 256 

 257 

In Stage 4 Model 1 was covered with a thin roof sequence and subjected to 25 cm of lateral 258 

shortening (Table 1). Height-change maps reveal the evolution of the model during inversion 259 

(Figure 7). As expected from previous studies (e.g. Dooley et al., 2009, 2015; Callot et al., 2007, 260 

2012; Duffy et al., 2018), initial shortening resulted in rejuvenation of the two main diapirs 261 

formed during the extension and loading stages (1 and 2 on Figure 7a). This was followed by 262 

uplift of the composite minibasin system and the formation of a series of linear and curvilinear 263 

uplifts (Figure 7b). These uplift patterns are very similar to the ridge networks seen during Stage 264 

3 (compare Figures 6a with 7b). With continued shortening the minibasin system continued to 265 

rise and salt emerged from Diapir 2 (Figure 7c). The network of curvilinear flanking uplifts 266 

continued to rise and become more prominent, and intervening lows shrank in area as they were 267 

overthrust (Figure 7c). At the end of the experiment Model 1 consisted of a central plateau that 268 

was cored by the minibasin system, and flanked by linear and curvilinear thrust ridges with 269 

narrow intervening lows (Figure 7d). Salt sheets emerged from Diapirs 1 and 2 and flowed down 270 

into the flanking topographic lows (Figure 7d). 271 

 272 

The final overhead view of Model 1 is shown in Figure 8. In this we see the central uplifted 273 

minibasin system forming an oblique plateau across the model, and flanked by the linear and 274 

curvilinear faulted ridge network. Flow directions of the salt sheets emanating from Diapirs 1 275 
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and 2 are indicated by red arrows (Figure 8). Major fault scarps were partially degraded exposing 276 

older strata, and some scarps abut, or override scarps with opposite sense of dip (Figure 8). On 277 

the right side of the model two fault scarps abut in the south and then coalesce forming a very 278 

narrow fault zone (Figure 8). These geometries and relationships are revealed by a series of four 279 

sections through Model 1 (Figure 9). The four sections illustrate the decoupled nature of 280 

deformation between sub- and suprasalt strata (Figure 9). The main feature is the structurally 281 

elevated extensional minibasin system that trended obliquely across the model (Figures 8 and 9). 282 

For much of the strike length this feature is flatted topped, and bounded on either side by 283 

detached suprasalt thrusts or secondary thrust welds as Diapirs 1 and 2 were squeezed shut 284 

(Figures 8 and sections 33 and 55 in Figure 9). Structural elevation of this minibasin system was 285 

partly aided by the inversion of subsalt graben that form inversion anticlines and harpoon 286 

structures in the subsalt strata (Figure 9; see the next section for further discussion). Primary 287 

welds denote where the minibasins have touched down on the subsalt strata. Also of interest in 288 

the suprasalt strata are emergent sheets and isolated salt bodies sourced from the squeezed and 289 

welded diapirs (e.g. section 33 and 55 in Figure 9), salt-cored thrusts and related secondary 290 

welding of portions of these as salt was ejected and hangingwall touched down onto footwall 291 

(e.g. Sections 33, 86 and 106, Figure 9). Other structures in the suprasalt section include highly 292 

overthrust popdowns, and narrow upright fault zones as hangingwalls collided during shortening 293 

(Section 86, Figure 9). A curious structured is observed in many sections, termed an “S” 294 

structure due to its shape (see Sections 55 and 86 in Figure 9). We will discuss the origins of this 295 

structure in the discussion section. In the subsalt strata structures are very different, consisting of 296 

inverted and heavily deformed graben systems in both the center and margins of the model as 297 

well as new popup structures (Figure 9). 298 
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 299 

4.  Discussion 300 

 301 

In this section we focus on: the formation and location of diapirs during extension and post-302 

extension loading; shortening styles and location in the suprasalt section during inversion; 303 

shortening styles and locations in the subsalt section, and; comparison of model results to 304 

examples from the High Atlas in Morocco. 305 

 306 

4.1 Diapir Formation and Location During Extension 307 

 308 

In Model 1 the main diapirs (diapirs 1 and 2, Figure 6), and associated salt wall or ridge 309 

networks formed in the footwall of the main extensional systems that flanked the composite 310 

extensional minibasin. More specifically the most active diapirs formed in locations spatially 311 

associated with the interlocking accommodation zones that originally separated the subbasins 312 

(Figures 3, 5 and 6). These locations are similar to those documented in Dooley et al. (2005), 313 

although the transfer zones in those models were vertical and rigid. Model 2 was run with almost 314 

identical parameters as Model 1, but was not inverted, preserving the diapir geometries and 315 

locations (Table 1 and Figure 10). Figure 10a shows the height-change map that evolved during 316 

Stage 1 of this model (see Table 1), consisting of an en-échelon series of three graben that run 317 

obliquely across the model, similar to that seen in Model 1 (see Figure 3a). The only difference 318 

Model 2 showed was the presence of marginal graben that formed closer to the main rift system 319 

than that seen in Model 1. This was attributed to the narrower basal silicone detachment used in 320 

Model 2 (Figure 2 and Table 1). Likewise the continued evolution of Model 2 through Stages 2 321 
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and 3 was very similar to that seen in Model 1 (compare Figures 10b, c with Figures 5a and 6a). 322 

The diapir network geometries and most active diapirs in Model 2 were very similar to those 323 

seen in Model 1. 324 

 325 

A section from Model 2 illustrates the extensional minibasins formed above the main graben and 326 

diapirs located in the footwalls of these graben (Figure 10d). As we saw in the strain maps for 327 

Model 1 there was only minor discrete extension in the suprasalt strata and these are cored by 328 

reactive diapirs (Figure 10d). The main diapir in this section is located in the footwall of the 329 

main graben system, and just along strike from the accommodation zone that separated the 330 

southern and central subbasins (Figure 10a, d). Salt expelled from beneath the subsiding 331 

minibasin flowed up onto the footwall and helped feed this growing salt diapir. We believe that 332 

salt was also preferentially expelled up and along the accommodation zones that separated the 333 

original subbasins and into these growing diapirs, as these accommodation zones have more 334 

gentle relief compared to the steep faults that bounded the minibasins, thus offering a more 335 

efficient conduit for salt flow.  336 

 337 

In order to corroborate this concept of preferred flow up and along transfer or accommodation 338 

zones, images from a third model, Model 3, are shown in Figure 11. Model 3 was subjected to 339 

the same amount of extension as Model 1, but a very limited amount of inversion (Table 1). In 340 

addition, the lack of a basal detachment across the entirety of the model base meant that 341 

shortening in the subsalt section was limited to shortcut thrusts close to the margins of the 342 

deformation rig that transferred shortening up to the weaker suprasalt section, with minimal 343 

shortening seen in subsalt strata in the central portion of the rift system (Figure 11a-e; Table 1). 344 
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The lack of deformation in the subsalt strata means that primary welds seen in the sections in 345 

Figure 11c-e, occurred during extension rather than during shortening. Depth slices from Model 346 

3 illustrate the composite, stepped, minibasin that formed above the en-échelon rift system 347 

(Figure 11a-b). The yellow marker salt that initially occupied the central graben of the rift 348 

(Figure 11f) is seen to be expelled up and out of this graben system into the footwall, where it 349 

helped inflate reactive diapirs that initially formed along these locations (Figure 11a-c; see 350 

reactive diapir on the right side Figure 10d for a non-inverted example). Model 3 also had 351 

substantial diapirs that flanked the rift in similar positions to those of Models 1 and 2, and yellow 352 

marker salt is seen to flow along and up the, now faulted, lower-relief accommodation or transfer 353 

zones and into these diapirs (Figure 11d-e). Thus, salt flow during extension and post-354 

extensional loading in Model 3 was multidirectional, being driven by differential loading out and 355 

up onto the intra-rift horst blocks both up the main subsalt faults and along lower-relief pathways 356 

such as the transfer zones that separated the subbasins in this rift system. Flow up and along 357 

these conduits was eventually curtailed or stopped by primary welding (Figure 11c-e). 358 

 359 

4.2 Shortening in the Suprasalt Section 360 

 361 

Figure 12 shows the salt volume that was extracted from the serial sections and exported as a 362 

point cloud. This image beautifully illustrates the structural style in the shallow section. The 363 

central part of the model is dominated by the inverted extensional minibasin system that forms 364 

an oblique structural low. Primary welds are denoted by gaps in the data, as the subsalt graben 365 

were inverted and structurally elevated the minibasin system (Figure 12). The minibasin is 366 

flanked by outward-vergent salt-cored thrusts, thrust welds and remnant high-level salt bodies or 367 
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sheets (diapirs 1 and 2, Figure 12). Thrust vergence reverses toward the margins of the model, 368 

and structures vary from salt-cored thrusts to box-like thrusted folds (Figure 12).  369 

 370 

Shortening in the suprasalt section is primarily controlled by the diapir and ridge network that 371 

formed during extension and post-extensional loading. This is clearly illustrated in Figure 13, 372 

which shows a height-change map, depth slice and dip section from Model 1. The diapir-ridge 373 

networks, labelled a-e on Figure 13, localized shortening structures because these are where the 374 

overburden was thinnest and thus weakest, and the diapir networks helped to focus deformation. 375 

Deformation in the shallow section is clearly detached from the subsalt structures, except where 376 

the minibasin system welded down onto inverted subsalt graben (Figures 9, 12 and 13c) Height-377 

change maps from the inversion phase also illustrate this reactivation of the pre-inversion diapir-378 

ridge network (compare Figure 7 and 13). Minibasin subsidence patterns in Model 1 were 379 

primarily symmetric during extension and post-extensional loading stages as evidenced by 380 

height-change maps (Figures 5 and 6), and by the stratal geometries seen in cross sections 381 

(Figure 9). During inversion the main minibasin system was structurally uplifted by the inverting 382 

subsalt graben (Figures 7), with little or no internal deformation except at the minibasin margins 383 

where suprasalt thrusts developed (Figures 9 & 13c). Only minor tilting caused by shortening of 384 

the main minibasin system is seen in the northern part of the model (section 106, Figure 9). 385 

Smaller minibasins developed above the marginal graben systems exhibit more severe tilting as 386 

they were carried up in the hangingwalls of major suprasalt thrusts (sections 33 and 55, Figure 387 

9). 388 

 389 
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 As mentioned in Section 3.4, there is a curious structure observed in suprasalt strata in some 390 

sections through Model 1 that is termed an “S” structure due to its shape (sections 55 and 86, 391 

Figure 9). This structure is found in a deformed salt-cored box fold in the southern part of the 392 

model (Figures 9 and 12). A series of sections through this structure give a pseudo-temporal 393 

evolution of this structure (Figure 14). The structure started as a faulted box fold, localized along 394 

a salt wall (e in Figure 13), that initially formed during extension and post-extension loading. 395 

One of the hinges began to fail on one side of this box fold and eventually limb failure occurred, 396 

forming a small weld as the core began to narrow (Figure 14a-b). Eventually salt in the core was 397 

expelled and the limbs welded, leading to the “S” geometry (Figure 14c). 398 

 399 

4.3 Shortening in the Subsalt Section 400 

 401 

We noted briefly in Section 3.4 that deformation in the subsalt strata is very distinct from that 402 

seen in suprasalt strata (Figure 9). In subsalt strata the most obvious structures are the popup 403 

structures in cross-section views, and none of these are linked to structures in the shallow section 404 

(Figure 9). However the most interesting structures are found along the central portions of the 405 

model where the pre-salt graben have been strongly deformed and inverted (Figure 9). Some of 406 

these structures form the highest subsalt relief seen in Model 1 (e.g. section 33, Figure 9). 407 

Height-change maps from Stage 4 of Model 1 clearly illustrate that the main minibasin system 408 

was preferentially uplifted as an intact block during shortening (Figure 7). This uplift was thus a 409 

result of preferential inversion of the subsalt graben system. This is borne out in cross-section 410 

views through Model 1 that clearly show uplift of the main minibasin system as a coherent block 411 

forming an almost flat plateau along the length of the center of Model 1 (Figures 7, 8 and 9). 412 
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Figure 15 shows detailed views of a non-inverted graben from Model 2 and an inverted graben 413 

from Model 1. In Model 2 the non-inverted section the structure consists of a mildly asymmetric 414 

graben with a smaller keystone graben formed against the more dominant right-side boundary 415 

fault (Figure 15a). Figure 15b shows a portion of Section 33 from Model 1 (Figure 9). In it we 416 

see a highly inverted basement graben system with a keystone graben system on the right margin 417 

as in Model 1 (Figure 15a-b). Inversion of this graben was asymmetric with greater uplift of the 418 

left side forming a harpoon-like inversion anticline that structurally elevated the suprasalt 419 

minibasin (Figure 15b). Based on the geometry of the non-inverted model the right side of the 420 

graben also saw significant inversion before being overthrust by a new subsalt thrust (Figure 421 

15b). More minor new thrusts are seen to the left of the graben system. Only a minor amount of 422 

structurally-induced tilting is seen in the suprasalt sequence (2.5°, Figure 15b), attributed to the 423 

primary weld being slightly off the mid-point of the minibasin. Detached outward-vergent thrusts  424 

are located at the minibasin margins (Figure 15b). 425 

 426 

As noted by Amilibia et al. (2005), amongst others, inversion of normal faults in laboratory 427 

models using sand is quite limited, sometimes being seen at shallow fault tips but bypass or 428 

shortcut faults are far more common. Fault reactivation in nature can occur under stress levels 429 

lower than that required to initiate new faults (e.g. Sibson, 1995), due to preexisting faults having 430 

a lower cohesive strength and friction coefficient than that of intact rock (Anderson, 1951). The 431 

lack of significant reactivation in sandbox models can be explained by the relative lack of 432 

difference between the strengths of faulted and unfaulted sands, favoring the formation of new 433 

shortcut faults (see Amilibia et al., 2005, and Bonini et al., 2011, for more details). Significant 434 

reactivation of graben-bounding faults in our models (see Sections 33 and 106 in Figure 9; 435 
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Figure 15b) are attributed to two factors. The first is the presence of the weak basal slabs that 436 

initially focused extension. Figure 15a shows remnant ‘horns’ of the polymer on either side of 437 

the graben, and during shortening these would help to focus initial shortening onto the graben 438 

system in the central part of the model. The second, and likely more important, reason is 439 

interstitial infiltration of polymer into a narrow zone of the brittle section forming a hybrid 440 

rheology along the preexisting faults. This results in a slight change in color of the granular 441 

materials at the sand-silicone interface, which is just visible in Figure 15. Prior to inversion the 442 

base and sides of the graben were in contact with silicone, resulting in interstitial infiltration 443 

(Figure 15a). The upper portions of the graben-bounding faults were also in contact with silicone 444 

again allowing for interstitial infiltration (Figure 15a). During shortening this interstitial 445 

infiltration acted as a “lubricant” allowing reactivation and inversion of these faults (Figure 15b). 446 

 447 

4.4 Comparison to Examples from the Moroccan High Atlas 448 

 449 

Saura et al. (2014) documented that inversion-related deformation in the central High Atlas of 450 

Morocco is mainly focused on minibasin margins with little internal deformation of these 451 

minibasins, with diapirs that originally separated these extensional minibasins soaking up much 452 

of the deformation, as is seen in our Model 1 (Figure 9). One such example is the Amezraï 453 

minibasin (Figure 16a; Saura et al., 2014; Moragas et al., 2017; see location on Figure 1). As in 454 

our Model 1, the Amezraï minibasin formed above a basement graben system and was flanked 455 

by complex diapirs located in the footwall of this graben system (Figure 16a-b). After inversion 456 

these flanks are the sites of significant upturn of flanking strata, thrusts welds and remnant 457 

pedestals, similar to structures found in Model 1 (Figure 16a-b). The Azag minibasin lies further 458 
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to the ENE along the central High Atlas (Figures 1 and 16c; Teixell et al., 2017). Again, this 459 

minibasin formed above a basement graben or half-graben system before being it was caught up 460 

in Alpine shortening resulting in the welding of adjacent diapirs (thrust or secondary welds; 461 

Figure 16c; Teixell et al., 2017), as seen in Model 1. The Azag minibasin also displays 462 

significant tilting in the E-W cross section of Figure 16c. Minibasins can tilt during subsidence 463 

either before or after welding (Rowan and Weimer, 1998; see Jackson et al., 2019, for more 464 

details), but the stratigraphic architecture of the Azag minibasin consists primarily of bowl- and 465 

tabular-shaped units indicating relatively symmetric subsidence during minibasin growth. 466 

Significant tilting of minibasins caused by shortening is seen in some locations in our Model 1 467 

(e.g. Section 106 of Figure 9), and thus, by analogy, the tilting and welding seen in the Azag 468 

minibasin is attributed to Alpine shortening and basement uplift. 469 

 470 

One notable difference between our model results (Figures 9 and 16b) and the example sections 471 

shown in Figure 16a, c is the amount of deformation seen in the basement or subsalt strata 472 

(Figures 9 and 16b). Basement geometries shown in Saura et al. (2014) and Teixell et al. (2017) 473 

are inferred due to lack of exposure. The geometry of the basement graben system beneath the 474 

Amezraï minibasin shown in Saura et al. (2014) was actually modified by Moragas et al. (2017) 475 

based on the results of their physical modeling study. In these natural examples the basement is 476 

shown as flat-topped as sub-salt shortening was taken up by simple fault reactivation and vertical 477 

uplift of hangingwall blocks (Figure 16a, c). If our physical models are indicative of the 478 

deformation intensity one would expect to see in the subsalt basement, then these more pervasive 479 

damage zones could have significant implications for fluid flow and for structural topography at 480 

the base of salt. However, our model basement consisted of essentially cohesionless materials, 481 
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and likely does not accurately represent the strength of basement rocks in the High Atlas or 482 

crystalline basement in general. An alternative explanation is that the amount of shortening in 483 

Model 1 was simply far more than that experienced in the Central High Atlas. More work is 484 

required on this topic. 485 

 486 

 487 

5.  Concluding Remarks 488 

 489 

Our physical models successfully generated segmented rift systems in a deformable basement 490 

that were subsequently infilled with a salt analog and subjected to further extension and finally 491 

inversion. During extension and subsequent downbuilding diapir and ridge networks formed that 492 

exerted a strong control on deformation styles and patterns during subsequent inversion. Diapir 493 

networks formed primarily in the footwalls of the basement fault system, similar to that 494 

described by Dooley et al. (2005) and Moragas et al. (2017). Diapiric growth was encouraged by 495 

salt expulsion from beneath the subsiding extensional minibasin systems that formed above the 496 

original basement graben, with major diapirs forming consistently in the locations of major relay 497 

systems or interlocking transfer zones that originally separated the basement graben systems. 498 

These more gently dipping structures facilitated more efficient salt expulsion driving diapiric 499 

growth at these locations. Extensional deformation in suprasalt strata was strongly decoupled. 500 

 501 

Inversion these salt-bearing rifts produced strongly decoupled shortening belts in basement and 502 

suprasalt sequences. In the suprasalt section deformation geometries and locations were 503 

primarily controlled by the salt diapir network produced doing extension and subsequent 504 
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downbuilding with thrusts formed minibasin margins where the overburden was thinnest and 505 

weakest. Extensional minibasins display little or no internal deformation as deformation was 506 

soaked up by diapirs and by these marginal thrusts, in a similar fashion to that observed from teh 507 

Central High Atlas of Morocco. Complex structures form where salt-cored box folds weld shut 508 

by hinge and limb failure. In the subsalt section the structural style is very different consisting of 509 

strongly inverted and pervasively deformed graben systems along with the formation of new 510 

popup structures as these inverted graben locked up. Inversion of these graben uplifted and 511 

welded the composite extensional minibasin system forming an almost flat-topped plateau across 512 

the center of the model. Significant reactivation of graben-bounding faults during inversion was 513 

aided by interstitial infiltration of our salt analog that helped “lubricate” the precursor faults.  514 

  515 
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Figure Captions 713 

 714 

Figure 1. Summary geological map of the central High Atlas of Morocco. Jurassic intrusive 715 

massifs containing upper Triassic shale, basalt and evaporite inliers have been interpreted as 716 

former diapiric ridge that separated extensional minibasins formed during Permian to Early 717 

Jurassic punctuated rifting. AmMB, Amezraï minibasin. AzMB, Azag minibasin. Map redrawn 718 

and modified from Teixell et al., 2017. 719 

 720 

Figure 2. Summary of experimental  setup used in models shown in this study. (a) Cross section 721 

view of the pre-rift setup. Models consist of a stretching rubber sheet overlain by a thin basal 722 

detachment and polymer ‘slabs’ covered by a layered sandpack. (b) Overhead view of 723 

deformation rig prior to emplacement of the layer pre-rift overburden. See text for further details. 724 

 725 

Figure 3. (a) Height-change map of Model 1 after pre-salt extension. Three en-échelon graben in 726 

model center are separated by accommodation zones with relays. Marginal graben formed at the 727 

model periphery. (b) Strain map of Model 1 during pre-salt extension. Accommodation zones 728 

consist of interlocking extensional faults. Note that some relays are breached. See text for further 729 

details. 730 

 731 

Figure 4. Emplacement of syn-rift salt in Model 1. (a) Pre-salt graben are infilled with our salt 732 

analog. (b) A regional salt fringe is then emplaced across the entire model. 733 

 734 
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Figure 5. (a) Height-change map during post-salt extension in Model 1. Post-salt extension was 735 

now 4 cm. Note the composite minibasin extending across the model center, above the original 736 

graben system. (b) Strain map of the same increment of post-salt extension. Note the diffuse 737 

strains in the suprasalt cover. Most extensional strains mark outer-arc extension above reactive 738 

diapirs. Note the minor shortening strains within the minibasin due to inner-arc contraction 739 

within the subsiding minibasin. 740 

 741 

Figure 6. Height-change maps of Model 1 after 16 (a) and 48 (b) hours of post-extension loading. 742 

In (a) we see the major diapir networks, formed during extension, continuing to rise as salt is 743 

expelled from beneath adjacent minibasins. After 48h loading (b) activity is now focused on two 744 

major diapirs. See main text for more details. 745 

 746 

Figure 7. Height-change maps (a-d) reveal the evolution of Model 1 during inversion. Initial 747 

shortening and uplift was focused on the diapirs formed during extension and loading (a), 748 

followed by uplift of the composite minibasin above the model center and rejuvenation of the 749 

diapir and ridge networks (b-d). 750 

 751 

Figure 8. Overhead view of Model 1 after 25 cm shortening. Diapirs 1 and 2 are clearly visible in 752 

this view as emergent salt sheets. Section lines are those shown in Figure 9. See text for further 753 

details. 754 

 755 

Figure 9. Representative sections through Model 1. Locations are shown on Figure 8. Inset 756 

shows the model stratigraphy. 757 
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 758 

Figure 10. Details from Model 2 (see Table 1). (a) Height-change map that evolved during Stage 759 

1 of Model 2. (b) Height-change map of Model 2 during post-salt extension. (c) Height-change 760 

map of Model 2 during post-extension loading. (d) Cross section from Model 2 illustrating 761 

extensional minibasins and diapirs of varying heights formed in the footwalls of the subsalt 762 

graben. See text for further details. 763 

 764 

Figure 11. Details of Model 3. (a-b) Depth slices through Model 3. (c-e) Arbitrary lines through 765 

a portion of Model 3. (f) Original location of yellow marker ‘salt’ in Model 3. See text for further 766 

details. 767 

 768 

Figure 12. 3D reconstruction of the salt volume from Model 1. See main text for details. 769 

 770 

Figure 13. (a) Height-change map from Stage 3 of Model 1 illustrating the diapir and ridge 771 

networks that formed during extension rising during post-extension loading. (b-c) Depth slice 772 

and dip section through Model 1 illustrating the five (a-e) main diapir networks. 773 

 774 

Figure 14. Detailed views (a-c) of sections through Model 1 illustrating the evolution of an “S” 775 

structure. 776 

 777 

Figure 15. (a) Detailed view of a non-inverted subsalt graben from Model 2. Note the 778 

asymmetric geometry and the formation of a keystone structure. (b) Detailed view of an inverted 779 
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subsalt graben from Model 1. Inversion of this graben uplifted and welded the overlying 780 

extensional minibasin. 781 

 782 

Figure 16. (a) Cross section through the Amezraï minibasin, Moroccan High Atlas. Note the 783 

uptilted minibasin margins, lack of internal deformation within the minibasin and the complex 784 

flanking diapirs and thrust welds. Redrawn from Moragas et al. (2017). (b) Detailed views of 785 

minibasin margins and associated thrust welds from Model 1. (c) E-W cross section through the 786 

Azag minibasin. Note the thrust welds and tilted nature of the minibasin. Redrawn from Teixell 787 

et al. (2017). 788 

 789 

 790 

 791 

Table 1. Model names and values for extension and inversion for experiments described in the 792 

main text. *denotes basal detachment was limited to the central region of the model. 793 

  794 

 795 

 796 
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Table 1. Model names and values for extension and inversion for experiments described in the 
main text. *denotes basal detachment was limited to the central region of the model.

Model 
Name

Basal 
detachment 
thickness 

(cm)

Number of 
basal slabs 

and their 
height (cm)

Regional 
salt fringe 
thickness 

(cm)

Pre-salt 
Extension 

(cm)

Post-salt 
extension 

(cm)

Total 
extension 

(cm)

Inversion 
(cm)

Stage 1 Stages 2-3 Stage 4

Model 1 0.4 3 x 1.5 1.2 3 6 9 25

Model 2 0.4* 3 x 1.5 1.2 3 6 9 0

Model 3 0.4* 3 x 1.5 1.2 2.5 6.5 9 8
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